
Video Killed The Data Store

Extending the n-Dimensional Display Interface for Full Screen Video

Charles D. Estes
University of North Carolina at Chapel Hill

Brooks Computer Science Building, CB 3175
Chapel Hill, NC 27599-3175 USA

cdestes@cs.unc.edu

Ketan Mayer-Patel
University of North Carolina at Chapel Hill

Brooks Computer Science Building, CB 3175
Chapel Hill, NC 27599-3175 USA

kmp@cs.unc.edu

ABSTRACT
Prior research introduced the n-Dimensional Display Inter-
face (NDDI) as a new“narrow waist” for the display pipeline.
In this paper, we extend the NDDI architecture to provide
a blending feature. We then utilize that new feature for full
screen video playback, leveraging application-level framing
to realize a significant data transmission reduction. We then
explore new NDDI configurations for effective rate control
under highly constrained transmission budgets.

Categories and Subject Descriptors
C.0 [General]: Hardware/software interfaces

General Terms
Design, Algorithms, Performance, Experimentation

Keywords
Display interface, framebuffer, scalable display

1. INTRODUCTION
Ever increasing display resolutions are pushing the limits

of framebuffer-based computer/display interfaces. Progres-
sively scanning a framebuffer at 5K display resolutions at
a fixed synchronous rate of 60Hz and 24 bits per pixel, for
example, requires 19 Gb/s of raw throughput. These data
rates are particularly challenging when connecting to a dis-
play wirelessly or using mobile devices with a limited battery
life. Clearly, these data rates motivate the use of compres-
sion in some way. Choosing a single compression standard
for communicating with displays, however, is problematic.
Different use cases and types of content will require differ-
ent types of compression techniques. Settling on a single
fixed standard limits future innovation and creates interop-
erability issues.

Our approach to this challenge is to rethink the com-
puter/display abstraction entirely. By replacing the simple

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MM’15, October 26–30, 2015, Brisbane, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3459-4/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2733373.2806271 .

Application x

y

Input Vector Coe!cient

Plane

Frame Volume

. . .

Display Panel

Display

Adapter

NDDI Display Device

NDDI

Engine

NDDI Link

Figure 1: NDDI concept diagram.

framebuffer abstraction with a more general and flexible ab-
straction that can be used to bring application-level domain
knowledge to bear in how display resources are best mar-
shaled. In effect, we have proposed a display architecture
that can be used to realize application-specific display com-
pression. We call this abstraction the n-Dimensional Display
Interface (NDDI) [7].

One way to think about a display is to consider it a sort of
“big data problem” where massive amounts of graphical data
are mapped and reduced to a 2D array of pixels on a display.
NDDI is designed to be a mechanism that allows applications
to explicitly express the contents of a display as a collection
of map-reduce operations on pixel data. It is intended to act
as a “narrow waist” abstraction that many different kinds of
applications will find different ways of employing.

The NDDI Display concept is illustrated in Figure 1. In-
stead of a simple framebuffer matching the dimensions of
the display, NDDI uses a Frame Volume that can be con-
figured to any dimensionality. It serves largely as a store of
pixel data on the NDDI device that can be mapped to the
Display Panel. The mapping is controlled by the Coefficient
Plane, which is a two-dimensional array of Coefficient Ma-
trices. The dimension of the Coefficient Plane match that
of the physical Display Panel (i.e., there is a Coefficient Ma-
trix for each pixel on the display). Updates to the display
are driven by the Input Vector. The NDDI Engine houses
digital logic that performs calculations necessary to multi-
ply the Input Vector by each pixel’s Coefficient Matrix to
produce an address tuple. The length of the address tuple
matches the dimensionality of the Frame Volume and acts
to address a specific pixel value stored in the Frame Volume

which is retrieved and placed on the Display Panel. Absent
of data dependencies, these calculations can all happen in
parallel.

By configuring the size of the Input Vector and dimension-
ality of the Frame Volume, applications can tailor the display
to their needs instead of interacting via a fixed framebuffer.
This application-level framing [1] empowers the application
to reconfigure the display based on its semantics. For ex-
ample, a remote kiosk cycling through a set of slides might
pre-render its content to the Frame Volume and then slowly
switch between advertisements with a single byte written to
the appropriate element of the Input Vector. An interac-
tive display with an intricate graphical user interface might
configure the Frame Volume as a 4D storage for a variety
of content like rendered frames, graphics primitives, icons,
fonts, sprites, etc. Compositing could then be performed
through appropriate mappings in the Coefficient Plane.

NDDI is not meant as a replacement for a GPU, nor is it
a special purpose display optimized for video playback. It
is simply a particular type of display that can be connected
to a display adapter with a GPU. The GPU can drive the
NDDI Display like a framebuffer or in numerous more ad-
vanced ways to realize a benefit based on application-level
semantics.

Our initial experiments focused on traditional applications
with no knowledge of the higher-order functionality provided
by NDDI. These experiments simply read out the frame-
buffer on every refresh cycle and translated the data into
NDDI-specific commands to update the memory regions of
the NDDI Display. The first significant benefit we demon-
strated was to update the NDDI Display only when the con-
tents of the framebuffer changed instead of on a fixed refresh
rate of 60 Hz. Subsequent experiments improved these re-
sults by using a tiled approach that divided the framebuffer
into blocks and updated the Frame Volume on a block-
by-block basis, potentially reusing previously transmitted
blocks.

The results were very compelling for many different com-
puter applications, save for one. Full screen video playback
saw no real benefit beyond updating the NDDI display at 24
fps instead of 60 Hz. Furthermore, the original NDDI Dis-
play specification lacked a critical feature: blending. Sev-
eral use cases require blending to smoothly composite non-
rectangular regions. This paper describes a refined NDDI
design that adds this critical new feature and uses it in a
novel way to revisit rendering of full screen video. The ex-
periments within show a 75% reduction in data transmission
cost placing video performance on par with the other com-
puter applications from the prior experiments.

In the remainder of this paper we provide more details on
the NDDI in Section 2. In Section 3 we discuss blending
extensions needed for advanced compositing. In Section 4
those extensions are used to drive NDDI in a novel video-
specific manner. We then extend these ideas in Section 5 to
include a multiscale approach that lends itself to constrained
bandwidth situations. Related work that inspired these new
schemes are described in Section 6 and the paper concludes
with a discussion of future work in Section 7.

2. N-DIMENSIONAL DISPLAY INTERFACE
NDDI is a display interface that uses a more complex

abstraction to replace the framebuffer. Defining this ab-
straction required balancing tradeoffs between transmission

benefit and flexibility. Our design concept for the new ab-
straction was driven by a set of guiding principles.

Framebuffer Compatible - Should be fully backward
compatible with applications that use a simple framebuffer.

Data-Driven - Should be stateless, updating determin-
istically based on data alone.

Progressive Benefit - Applications can leverage application-
level framing for stronger benefit.

Highly Parallel - Operations should remain independent
allowing for massive scalability.

Asynchronous - Should not require a synchronous signal
to drive updates.

2.1 NDDI Components
As introduced earlier, the NDDI Frame Volume (V) stores

3-channel pixel values transmitted to the display by an ap-
plication. Once in the Frame Volume, these pixel values can
be used in a number of ways, depending on the needs of the
driving application. A key innovation of the Frame Volume
is that it can be dynamically configured to any n-dimension
pixel space (Pn), allowing the pixels to be addressed with
a n-tuple matching that dimensionality. This allows appli-
cations to explicitly express the contents of a display as a
“mapping”of these pixels. With the data now on the display,
these mapping operations can scale with the display instead
of relying on rendering and transmission components to scale
in lockstep.

Specifically, the mapping operations performed by NDDI
are driven by the Input Vector (i) and controlled by the
Coefficient Plane (C). The Input Vector is a one dimen-
sional vector with a length (m) that is configureable such
that m ≥ 2. The first two elements ix and iy are reserved
and logically are set to the x and y coordinates for the pixel
being mapped. The remaining values are to be updated by
the application on a frame-by-frame basis. The Coefficient
Plane is a two-dimensional array matching the physical di-
mensions of the Display Panel (w×h). The Coefficient Plane
holds Coefficient Matrices (M). A Coefficient Matrix is a
matrix of Coefficients (c) where the size of the matrix is
coordinated with the length of the Input Vector and the di-
mensionality of the Frame Volume (m×n). The purpose of
each Coefficient Matrix at location (x, y) in the Coefficient
Plane is to perform a mapping that chooses a pixel from
the Frame Volume to be composited (i.e., reduced) on to
the Display Panel at location (x, y). The mapping is done
by performing matrix multiplication of the Input Vector by
the Coefficient Matrix, producing an n-tuple that uniquely
addresses a pixel value from the framebuffer.

2.2 Pixel Mapping
The pixel mapping operations are deterministic, consist-

ing of highly parallel matrix multiplication. The equations
below provide formal definitions. px,y is the value from pixel
space being mapped at location x, y on the Display Panel
(2). The Frame Volume (V) is configured with n fixed di-
mensions (an nth-order tensor), a subset of n pixel space
(3). The Input Vector (i) is an integer vector of length m
(4). Each Coefficient Matrix (M) is an m×n matrix of coef-
ficients (c) (6). Coefficients are integers (5). The Coefficient
Plane (C) is a two dimensional array from coefficient matrix
space.

P = {(r, g, b)|0 ≤ r, g, b < 28} (1)

. .
 .

1 0 0 0

0 1 0 0

0 0 1 0 Coe!cient

Matrices

Coe!cient Plane Frame Volume

(0, 0, 2)

0

x

y

2

1

Input

Vector

1 0 0 -1

0 1 0 0

0 0 1 0

1 0 0 -1

0 1 0 0

0 0 1 0

1 0 0 -1

0 1 0 -1

0 0 1 0

1

2

(i)

(C) (V)

(M)

Figure 2: Example NDDI Configuration for simple
video player with 4x scaling.

px,y ∈ P, x < w, y < h (2)

V = Vi1i2...in , v ∈ P (3)

i ∈ Zm (4)

c ∈ Z (5)

M =

c11 · · · c1m
...

. . .
...

cn1 · · · cnm

 (6)

C =

M11 · · · M1w

...
. . .

...
Mh1 · · · Mhw

 ,C(x, y) = Mxy (7)

The Lookup operation takes an n-tuple as an address and
retrieves the pixel from that location of the Frame Volume
(8). The Map operation accepts a 2-tuple (x, y) and uses the
Coefficient Matrix at that location in the Coefficient Plane
to multiply by the Input Vector (9). The first two values of
the Input Vector will be set to x and y and the remaining
values are set by the application.

p = Lookup(V, (a1, ..., an))) (8)

(a1, ..., an) = Map(x, y) = C(x, y)i (9)

The complete calculation for the pixel px,y uses the Map
operation to produce the address tuple used in the Lookup
(10).

px,y = Lookup(V,Map(x, y)) (10)

As an example, Figure 2 shows a possible configuration for
a scaled video player application. The Input Vector is config-
ured with length four. The Frame Volume is configured with
three dimensions and each frame of video is rendered into
an x-y plane of the Frame Volume, treating the z dimension
like a circular buffer. The Coefficient Matrices are therefore
defined to have four columns and three rows. The applica-
tion chooses coefficients to specify an affine transformation
so that the contents of each x-y plane are effectively scaled

by four. The third value in the Input Vector is then used
to choose which x-y plane is active (i.e., advancing through
the circular buffer) and the fourth value is fixed at one as
part of the affine transformation.

The following shows the specific calculation for the pixel
at (1, 1) of the display using the values from Figure 2. This
is the fourth pixel in this group of pixels that are scaled from
a single pixel.

Map(1, 1) =

1 0 0 −1
0 1 0 −1
0 0 1 0




1
1
2
1

 =

0
0
2

 (11)

p1,1 = Lookup(V, (0, 0, 2)) (12)

Map-reduce as a general paradigm is a natural fit for our
goal of providing a scalable display interface abstraction.
NDDI uses map-reduce at multiple levels in order to arrive
at a result. At the coarsest level, NDDI uses the Coefficient
Plane to map a pixel value to each Display Panel location.
At a finer level, the matrix multiplication of the Input Vector
by each Coefficient Matrix can be considered a map-reduce
operation producing a tuple that chooses a pixel value from
the Frame Volume. Later in the paper, we will refine the
NDDI design with another map-reduce layer to provide pixel
blending operations that can also be used to support video.

2.3 Application Agnostic Experiments
Our prior experiments assumed the application to be un-

aware of NDDI and aimed to demonstrate a transmission
savings without leveraging any application-level semantics.
These experiments served to support backward compatibil-
ity by monitoring a framebuffer and translating its changes
into the appropriate NDDI commands. The first experiment
configured NDDI as a simple framebuffer, while the next two
experiments used “tilers” that divided the framebuffer into
blocks that could be updated and reused as necessary.

Simple Framebuffer Experiment - Treats the entire
framebuffer as a single block, updating the entire region
whenever a pixel changes. The Frame Volume is organized
into two dimensions matching the Display Panel.

Flat Tiled Experiment - Tiles the framebuffer into
blocks and only updates the blocks that change. The Frame
Volume is configured to match the Display Panel.

Cached Tiled Experiment - In addition to tiling the
framebuffer, the Frame Volume is organized into three di-
mensions forming a very deep stack of 2D tiles (Figure 3)
that act as a cache of blocks. A block is easily mapped to
the Display Panel by using an efficient Coefficient Plane fill
command for that region of Coefficient Matrices.

These initial experiments were driven with pre-recorded
computing sessions at 24 fps. The results for the computing
sessions are shown in Figure 4. The results are shown as
a ratio of the NDDI data sent versus the amount of data
that would be required if the entire display was scanned and
transmitted every 60 Hz cycle. As a best case, an Ideal mode
was introduced. It represents the amount of data required
to send over just the individually changed pixels, ignoring
the cost of addressing that pixel on the display.

In the Simple Framebuffer experiment, updating the NDDI
Display at 24 fps instead of 60Hz provides an immediate

x

y

1

. .
 .

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

. . .

. . .

. . .

. . .

. . .

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

. . .

. . .

. . .

. . .

. . .

Input

Vector

Coe!cient

Matrices

Coe!cient Plane Frame Volume

(x’, y’, z)

(C) (V)

(M)

(i)

Figure 3: Cached Tiler NDDI configuration.

Figure 4: Experiment results for the recorded com-
puting sessions (logarithmic scale).

Figure 5: Experiment results for full screen video
playback.

benefit by reducing how often data was sent. Furthermore,
any time the display was unchanged, no data was sent at
all. The Flat Tiled experiment did significantly better for
scenarios where the screen was mostly static. The Cached
Tiled experiment did marginally better than Flat Tiled. It
benefited from efficient fill operations where a single block
could be used for several different regions of the display. Ad-
ditionally scenarios that re-used content such as switching
between windows showed a significant benefit.

The results for full screen video playback (Figure 5) were
very weak by comparison. In an attempt to realize stronger
gains, the Cached Tiler was augmented with a lossy mode
where only a certain number of significant bits per pixel
channel were used when determining cache matches. Specif-
ically, Cached(8) is lossless (i.e., the match must be exact)
and Cached(4) is lossy using only the first 4 bits per chan-
nel to match blocks. Using Cached(4) a modest gain was
realized while maintaining a reasonable PSNR ranging from
36.71 to 48.73. However, visual artifacts from re-using near
matches affected perceived quality.

3. BLENDING
In order to support non-trivial uses cases that require com-

positing on the display, NDDI must provide a means to blend
pixels. The original NDDI design does not do so. To address
this shortcoming, we refined the NDDI design while staying
true to our guiding principles. Three different approaches
were considered.

3.1 Temporal Blending
The first approach requires no modifications to the orig-

inal NDDI feature set. Temporal Blending exploits image
persistence associated with the physical operation of the Dis-
play Panel. The driving application renders the planes to
be blended into separate planes within the Frame Volume.
Pixel blending is then achieved by driving the Input Vector
to rapidly switch between those planes using a duty cycle
tuned to the desired blending percentage.

Disadvantageously, Temporal Blending is tightly coupled
to the technology used in the Display Panel. Different dis-
play panel technologies may have vastly different levels of
image persistence and may support different refresh rates.
Furthermore, it is difficult to blend only sub-regions of the
display. Lastly, Temporal Blending is not in keeping with
our guiding principle which encourages NDDI to be asyn-
chronous. Driving the Input Vector so precisely and syn-
chronously puts heavy requirements on the quality of service
of the connection to the NDDI Display.

3.2 Frame Volume Blending
Frame Volume Blending is perhaps the most intuitive ap-

proach. With Frame Volume Blending, pixel values are ex-
tended to support an alpha channel. The alpha channel is
used with a new NDDI command that alpha blends pixel
values from one area of the Frame Volume onto another tar-
get area. This blending operation might be implemented
by a dedicated digital logic block. The application must di-
rect these operations in order to achieve the desired blended
result.

Frame Volume Blending suffers from a number of disad-
vantages. First, the capabilities of any blender-specific hard-
ware will need to scale with the display in order to blend
display-sized or larger areas within the Frame Volume. Sec-

ond, Frame Volume Blending upsets the ratio of Frame Vol-
ume reads to writes. As originally conceived without Frame
Volume Blending, large Frame Volume sizes can be sup-
ported with an appropriate memory cache hierarchy. Frame
Volume Blending now requires more emphasis on Frame
Volume write performance and works against caching. In
addition to these engineering disadvantages, Frame Volume
Blending like Temporal Blending is not in keeping with our
guiding principles. Frame Volume Blending requires the ap-
plication to send over the components of a blended area and
to use multiple NDDI commands to composite the result in
stages. This uses NDDI as a sort of state machine rather
than being entirely data-driven and highly parallel.

3.3 Coefficient Plane Blending
While less obvious, the third approach proved to be the

most compatible with our guiding principles while remain-
ing highly flexible. Coefficient Plane Blending extends the
NDDI architecture to now provide 64 separate Coefficient
Planes and augments every Coefficient Matrix with an as-
sociated Scaler (13). A Scaler (s) is a 3-tuple representing
independent scalers for each color channel (15). Each of the
64 Coefficient Planes still matches the physical dimensions
of the display panel.

With this extended architecture, to calculate a pixel value
for the Display Panel, the Coefficient Matrices at position
(x, y) in each of the 64 Coefficient Planes will map to specific
pixel values from the Frame Volume. These 64 pixel values
are reduced to a single value by multiplying each by their
associated Scaler, accumulating across all 64 planes and di-
viding by the maximum Scaler (sγ). This is similar to alpha
blending, but with a configurable maximum scaler (16) that
in our implementation must be a power of two instead of a
fixed maximum of 256. This provides a level of flexibility
while constraining the maximum to ensure that the division
can be implemented efficiently as a shift operation.

Ck =

M11 · · · M1w

...
. . .

...
Mh1 · · · Mhw

 , 0 ≤ k < 64,Ck(x, y) = Mxy

(13)

Sk =

s11 · · · s1w
...

. . .
...

sh1 · · · shw

 , 0 ≤ k < 64,Sk(x, y) = sxy (14)

s = {(r, g, b)|−215 < r, g, b < 215} (15)

sγ = {(2γ , 2γ , 2γ)|0 ≤ γ < 15} (16)

Unlike alpha blending, the NDDI scalers are both signed
and multi-channel allowing for both positive and negative
blending with different values for each color channel. Fur-
thermore, the retrieved pixel values can be treated as un-
signed 8-bit values or as signed 7-bit values allowing subtrac-
tive masks. The Map operation as defined before is modi-
fied slightly to take an additional plane argument (17). The
Blend operation simply sums the mapped values multiplied
(dot product) by the scalers and then shifts by γ (18).

(a1, ..., an) = Map(x, y, k) = Ck(x, y)i (17)

Figure 6: Rendered DCT basis functions.

(a1, ..., an) = Blend(x, y) =

63∑
k=0

Map(x, y, k) · Sk(x, y)

2γ
(18)

While appearing complex, Coefficient Plane Blending is in
keeping with the guiding principles – in particular allowing
an application to use it in a simple way or to bring to bear
application-level semantics to employ it in a more sophisti-
cated manner as is shown in the video use case described in
Section 4.

From an engineering perspective, Coefficient Plane Blend-
ing does greatly increase the amount of memory required
for the Coefficient Planes. That memory, however, can be
localized within the per-pixel digital logic. Furthermore,
the blending operation itself is just another map-reduce step
where the mapping operation performs the scaling and the
reduction operation is the accumulate and shift.

4. VIDEO
The refined NDDI architecture to support blending can

be used to benefit video content as well. Prior experiments
showed lackluster performance on video playback in terms
of transmission savings. With Coefficient Plane Blending
in place, we revisit video playback as a task of blending
pre-rendered DCT basis functions (Figure 6) [13]. This
new experiment introduces our first scheme for configuring
the NDDI Display to benefit a application-specific content
model.

We implemented a new tiler called the DCT Tiler. The
NDDI display was configured as shown in Figure 7. The
Frame Volume is configured to be 8× 8× 64 so that it can
hold 63 pre-rendered basis functions and a level shift plane
as described below. The Input Vector has a length of three
with the third value fixed at one. The Coefficient Matrices
all have simple affine transforms that map each block of a
Coefficient Plane back to an 8×8 area of the Frame Volume
with the z component designating a specific plane (i.e., a
particular basis function).

For the initial Frame Volume setup, the 63 pre-rendered
basis functions were generated as grayscale renderings of a
maximum coefficient of 256 clamped to the range [−127, 127].
They are arranged in “zig-zag” order which is important

x

y

1

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

. . .

. . .

. . .

. . .

. . .

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

. . .

. . .

. . .

. . .

. . .

Input

Vector

Coe!cient

Matrices

Coe!cient Planes
Frame Volume

(x’, y’, z)

. .
 .

64
. .

 .

64

(1,1,1) (1,1,1)

(1,1,1) (1,1,1)

3-Channel

Scalers

(Ci)
(V)

(i)

(M)

(S)

Figure 7: DCT Tiler NDDI configuration.

Figure 8: Example blending of weighted basis func-
tions for four 8 × 8 blocks. (a) shows the rendering
with just the DC coefficients for the four blocks. (b)
blends the first AC coefficient for each block. (c)
blends the second AC coefficient. Finally (d) shows
the results of all 63 weighted coefficients blended.

for efficiently updating Scalers associated with a particu-
lar block. The final 64th plane is not a pre-rendered basis
function, but rather a medium gray plane. This is required
because the basis functions are signed and centered at zero.
The resulting image must be level shifted to unsigned pixels
centered at medium gray.

With the Input Vector, Coefficient Matrices, and Frame
Volume initialized, only the Scalers are left uninitialized.
The Scalers represent the DCT coefficients. Essentially, the
DCT Tiler acts as a simple intra-frame encoder using 8× 8
blocks. For each frame, the video is tiled into blocks. Those
blocks are transformed to the frequency domain via a DCT.
Then the values are quantized with a configurable quality
factor.1 The values are then de-quantized to produce a set
of weights. These are arranged into zig-zag order matching
the organization of the basis functions already rendered in
the Frame Volume and used to set the Scalers for the block.

1The quality factor is an integer multiplied by a simple
quantization matrix biased against high-frequency compo-
nents.[15]

Figure 9: Revised video results with new DCT tiler.

Video PSNR (1) PSNR (4)

bourne-dialog 42.49 39.81
bourne-moderate 41.35 37.09

bourne-action 43.91 42.03
captain-720 41.55 37.99
captain-1080 42.66 40.03
limitless-720 42.30 39.55
limitless-1080 43.28 41.24

Table 1: DCT Tiled Mode Statistics using a quality
factor of 1 (best) and 4 (modest).

Figure 8 illustrates this process with an example of weighted
basis functions being blended over a small 16× 16 region of
pixels.

Figure 9 shows the results for video using the new DCT
tiler alongside the results from the original experiments. The
y-axis shows a ratio of the bytes transmitted over the NNDI
link for the particular mode compared to the bytes trans-
mitted when the entire framebuffer is sent at 60 Hz. The
two additional DCT Tiler runs use a quality factor of 1 pro-
ducing the highest available quality and 4 which was ex-
perimentally determined to reduce the number of surviving
coefficients while still producing comparable PSNR scores
(see Table 1). The ratio of both of the DCT Tiler runs are
far better than Ideal which is a contrived mode that only
measures the amount of data associated with pixels that are
changed without any addressing overhead. While the DCT
Tiler is a lossy mode, video quality remains high.

5. MULTISCALE DCT
The DCT Tiler experiment was our first experiment to ex-

ploit application-level semantics to utilize NDDI in a new,
more sophisticated way. The next experiment aimed to
leverage NDDI more fully to address the issue of rate control
based on video content. The DCT Tiler has an adjustable
quality factor, but our goal for the Multiscale DCT Tiler ex-
periment was to try to exploit additional savings from more
sophisticated configurations of NDDI.

The earlier scaled video player example in Figure 2 is a
simple decoder that takes advantage of the Coefficient Plane
mapping to scale a source video to 4x by mapping groups of
four pixels from the display to a single pixel from the source.
The same concept of scaling can be extended to the DCT
Tiler such that pre-rendered basis functions are scaled to

cover larger than 8 × 8 blocks on the display. The obvious
disadvantage here is that detail is lost when the source video
is downscaled for transmission and then upscaled on the
display. While this may be acceptable for areas of the frame
without fine details, it is not a good scheme for those that
do. Advantageously, NDDI affords a level of flexibility such
that portions of the display can be rendered at a 1x scale
while others are rendered at coarser scales.

NDDI does impose some design constraints that need to
be considered. First, reconfiguring areas of the Coefficient
Planes is not free. Therefore it is not advisable to do so often
as it can impose a heavy penalty on a data transmission
budget. To address this, we do not configure areas of the
display at particular scales; instead we divide the Coefficient
Planes among the different scales. This leads to the next
constraint which is the limit of 64 Coefficient Planes. Losing
even a few Coefficient Planes for a particular scale means
that high frequency details cannot be rendered. In order to
maximize quality as seen experimentally through PSNR, the
1x scale must retain a majority of the planes doling out only
a few planes to the coarser scales.

Despite the constraints, the Multiscale DCT Tiler does
show promise as a means to support rate control while maxi-
mizing quality. This is achieved primarily by updating large
homogenous regions of the frame using the higher scales.
Secondarily, the coarser scales serve as a prediction that can
then be refined with the finer scales acting to address the
residual differences. Figure 10 illustrates this using a 4x
scale with only one Coefficient Plane. In such a configu-
ration, the 1x scale only loses one plane and can therefore
represent very fine details. However, the motivation of the
Multiscale DCT Tiler is to experimentally find which con-
figurations win out when the rate is reduced dramatically.

5.1 Multiscale Configuration
The Multiscale configuration is specified as a series of

scales and number of planes dedicated to that scale. That
number of planes is defined as the edge length in a square
of basis functions. As an example, a 2 would indicate that
4 planes are reserved for that scale and that the DC coeffi-
cient and the AC coefficients at (1, 0), (0, 1), and (1, 1) are
used. The choice of the shape is critical, because it allows
the higher scales to create effective “checkerboard” outputs
where each square of the rendered pattern provides a predic-
tion for one or more finer blocks along perfect boundaries.
When using a full 8 × 8 set of basis functions, it is likely
that far fewer than 63 planes will be available. Therefore,
the ordering remains zig-zag so that higher frequency AC
coefficients are truncated first. The following illustrates the
multiscale configuration used for the experiments.

• 1:8 - The only scale (1x) uses all 63 basis functions.

• 16:1, 1:8 - The first scale (16x) uses only the DC basis
function. The remaining 62 are used for 1x.

• 2:2, 1:8 - The first scale (2x) uses a 2 × 2 square of
basis functions. The remaining 59 are used for 1x.

• 4:3, 1:8 - The first scale (4x) uses 9 basis functions.
The remaining 54 are used for 1x.

• 8:2, 4:2, 1:8 - The first two scales (8x, 4x) each use
4 basis functions. The remaining 55 are used for 1x.

Figure 10: Multiscale DCT example of 16 8 × 8
blocks. (a) shows the image to be rendered consist-
ing of mostly medium gray. If the first configured
scale is 4x with only one plane, then (b) represents
the contents of the display after that first layer is
rendered. The next configured layer is 1x with the
remaining 62 planes. After the first rendering, only
9 of the 16 blocks need to be updated. (c) shows
the contents of those four blocks. Of the 9 blocks
that are rendered at the 1x scale, 5 did not need to
encode the DCT coefficient, because their DCT co-
efficients matched the coefficient from the 4x layer
as seen in (d) which illustrates the DCT component
from each of the 16 blocks at the 1x scale.

5.2 Priority Updating Schemes
The Multiscale DCT experiments explore the different

multiscale configurations in terms of performance when a
transmission budget is enforced. The motivation for this
change is that each additional set of planes dedicated to a
new scale removes the highest frequency planes from the
finest scale thus guaranteeing a loss in quality. Therefore,
such a configuration must minimize the number of Scalers
that are updated while sacrificing the minimal number of
planes from the 1x scale. To minimize the Scalers sent over
the wire, we employ four different priority schemes when
choosing which Scalers to update.

When considering multiscale configurations and priority
updating schemes, it is important to realize another con-
straint of NDDI. As seen with the DCT Tiler, it is possible
to implement an NDDI command to update all of the Scalers
for a “stack” of tiled regions of the Coefficient Plane, but it
does incur a cost to address the stack and then to specify the
size of the tiles and the stack size. Even going from a con-
figuration of just 1x with a stack of one to three scales with
three stacks incurs a penalty, but it is mitigated somewhat
because the higher scales have fewer blocks. Our priority
schemes seek to reduce the size of each stack either through
leaving off Scalers for high frequency DCT coefficients from
the “bottom” of the stack or the low frequency Scalers from
the “top” of the stack as was seen with the example in Fig-
ure 10. We explored the following priority updating schemes
each with a tunable variable Delta or Plane Count that is
set for every frame in order to ensure that the budget is met.

Trim with a Delta The DCT Tiler trims the unchanged
Scalers from the top and bottom of a stack of Scalers before
sending them to the NDDI Display. When Trimming with

a Delta, then any Scaler where all three channels are within
a Delta from the current Scaler is considered unchanged.

Trim with a Plane Count This form of trimming starts
with the first unchanged Scaler from the top and trims off
enough of the bottom Scalers to a stack height specified by
the Plane Count.

Snap to Zero with a Delta In this scheme any Scaler
with all three channels within a Delta from zero is set to
zero. This is obviously effective for the high frequency AC
coefficients at the bottom of the Scaler stack, but it is also
beneficial for the DC and low frequency AC coefficients for
the finer scales where coarser scales have produced a predic-
tion that drives these coefficients near zero for the residual.

Snap to Zero with a Plane Count While still snapping
to zero, this scheme starts with top-most non-zero scaler for
each stack and zeroes out the bottom of the stack producing
a stack height specified by the Plane Count.

5.3 Multiscale DCT Results
The multiscale configurations and priority schemes were

evaluated using various ten-second clips with resolutions rang-
ing from DVD to 4K. For each video source, we estimated
the motion by calculating the optical flow using the Lucas-
Kanade method with pyramids [12]. We then chose the ten
second clips with the highest, lowest, and median flow. Each
of the clips was tested with all twenty combinations of con-
figuration and priority scheme using three budgets. The
budgets were determined for each video clip using a calcu-
lation that used only 8, 4, and 2.5 bits per pixel for low,
medium, and high compression. The calculations were ad-
justed to 4, 3, and 2 bits per pixel for 4K video to better
suit the somewhat lower frequency data in the blocks.

Several of the clips exhibited a notable relationship be-
tween optical flow and the resulting PSNR. Figure 11 shows
the median flow clip of a 720p movie. All twenty runs are
shown using the medium (4 bpp) data budget. The flow
for each frame is shown as an average that is normalized
to [0, 1000] and shown on a separate axis with a logarith-
mic scale. Nearly every run follows a similar trend; areas of
high flow produce better PSNR. This is largely attributed
to the motion blur associated with high flow sections. The
blur effectively removes high frequency data from each block
favoring a multiscale configuration that sacrifices several of
the high frequency AC coefficients at the finest (1:8) scale.
The low flow areas produced a much lower PSNR than we ex-
pected. This particular clip primarily consists of slow sweep-
ing shots, and while the motion is not great this is enough
to overcome the simple prediction residual model. Proper
motion compensation would likely produce a superior result.

The clips with larger areas of static content performed
much better. Figure 12 shows the median flow 4K clip.
The top performing two priority schemes were chosen and
all three compression settings (4 bpp, 3 bpp, and 2 bpp)
were used for each priority scheme. This particular clip is a
movie trailer that contains many rapid scene changes with
scenes ranging from dialog to high action. Additionally the
scene transitions are marked with large black screens with
little text. Some of the previous trend is seen with high
flow sections yielding higher PSNR, but there was lessened
reduction in PSNR for the low flow sections because the flow
did not uniformly affect the entire scene. The clip starts with
a black screen displaying an actor’s name in the center. It
then fades to a head shot punctuated later by a fade through

Figure 11: PSNR of all configuration and priority
schemes contrasted to optical flow using the medium
budget constraint on the Limitless 720p median flow
clip.

Figure 12: PSNR of best configuration and priority
schemes contrasted to optical flow using all three
budge constraints on the Elysium 4K median flow
clip.

black that produces the very high peak with a PSNR of
nearly 64 for the low and medium compression.

The average PSNR for each clip is shown in Tables 2
and 3 alongside the best configuration. For the high and
medium data budgets a basic 1:8 scale configuration per-
formed best. For the high data budget the priority schemes
performed very similarly, whereas Snap Delta performed
best for medium data budgets. Perhaps most interesting,
the 2:2 1:8 scale configuration and Snap Delta performed
the best for all of the clips when using the low data budget.

The DCT Tiler uses the data budgets as upper bounds
when determining either the plane count or delta for each
scale. Therefore the data actually transmitted with an 8 bpp
budget may not be exactly double that of a 4 bpp budget.
Figures 13 and 14 show the total number of bytes sent over
the NDDI Link as a ratio to a 60 Hz signal. The larger for-
mats clips generally perform better. The trailer clips (cap-
tain and elysium) perform exceptionally well in areas of low
flow due to large static frames containing informational text
for the audience. In fact, for the 4K elysium clip a majority
of the frames were rendered under the tightest budget while
still updating all changed Scalers.

Figure 13: Video results for the DVD, 720p, and
1080p 10s clips using the medium data budget and
the configuration and priority scheme that per-
formed best. As with before, the results are a ratio
of the byte transmitted over the wire compared to
a 60Hz.

Figure 14: Video results for 4K 10s clips using the
medium data budget and the configuration and pri-
ority scheme that performed best. As with before,
the results are a ratio of the byte transmitted over
the wire compared to a 60Hz.

Video / Budget
Flow 8 bpp 4 bpp 2.5 bpp

bourne DVD

low
35.75 - 1:8
trim delta

33.79 - 1:8
trim delta

31.99 - 2:2 1:8
snap delta

bourne DVD

median
38.64 - 1:8
snap planes

36.57 - 1:8
snap delta

34.91 - 2:2 1:8
snap delta

bourne DVD

high
44.01 - 1:8
trim planes

43.69 - 1:8
snap delta

41.11 - 2:2 1:8
snap delta

captain 720

low
41.14 - 1:8
trim delta

40.44 - 2:2 1:8
snap delta

38.98 - 2:2 1:8
snap delta

captain 720

median
39.94 - 1:8
snap planes

38.67 - 1:8
snap delta

37.43 - 2:2 1:8
snap delta

captain 720

high
40.52 - 1:8
snap planes

39.79 - 1:8
snap delta

38.72 - 2:2 1:8
snap delta

limitless 1080

low
41.62 - 1:8
snap delta

41.53 - 1:8
snap planes

39.72 - 1:8
snap delta

limitless 1080

median
41.33 - 1:8
snap delta

41.06 - 1:8
snap delta

39.28 - 1:8
snap delta

limitless 1080

high
39.52 - 1:8
trim delta

38.79 - 1:8
snap delta

37.51 - 16:1 1:8
snap delta

Table 2: PSNR and Optimal configuration / scheme
for each of the low, medium, and high flow clips.
The data budgets are 8, 4, and 2.5 bits per pixel.

Video / Budget
Flow 4 bpp 3 bpp 2 bpp

elysium 4K

low
48.78 - 1:8
snap delta

48.79 - 1:8
trim planes

48.32 - 2:2 1:8
snap delta

elysium 4K

median
43.56 - 1:8
snap delta

43.03 - 1:8
snap delta

38.06 - 2:2 1:8
snap delta

elysium 4K

high
43.14 - 1:8
snap delta

42.47 - 1:8
snap delta

41.35 - 2:2 1:8
snap delta

Table 3: PSNR and Optimal configuration / scheme
for each of the low, medium, and high flow 4K clips.
The data budgets are 4, 3, and 2 bits per pixel.

6. RELATED WORK
In defining the n-Dimensional Display Interface, we sought

to redefine a new narrow waist while avoiding the “Wheel
of Reincarnation” [14] by just raising the abstraction. Some
of the earliest graphics interfaces have tackled the render-
ing pipeline with highly parallel logic. The framebuffer has
survived since the advent of high-density integrated memory
in the 1970’s with the SuperPaint [18] system from Xerox
Parc. As one of the earliest 3D systems, Pixel Planes [8]
used programmable logic to realize equations used to render
polygons and spheres as well as compute advanced graphics
techniques such as shadows, transparency, and anti-aliasing.
As 3D rendering became more prevalent, the parallelism be-
came more evident [2]. Slowly the computation moved fur-
ther from the display. Today GPUs embody much of this
parallelism into dedicated hardware distinct from the dis-
play. They perform their operations and reduce the result
to a single framebuffer that is serialized and sent over the
wire.

Today, growing display resolutions and transmission me-
dia have led to numerous new standards and technologies
to better cope. Digital standards like DVI [20] [4], HDMI
[6] [10], and DisplayPort [22] have coped well enough, but
they have not used parallelism to address the problem of
pixel transmission instead relying on digital compression.
Research into large-scale displays and display walls is tack-
ling the problem through more explicit parallelism. IBM’s
Scaleable Graphics Engine (SGE) [17] introduced a hard-
ware framebuffer allowing separate nodes to render their
content. With such high resolutions, collaboratively ren-
dering display content proved promising in systems such as
Lightning-2 [19], Chromium [11], SAGE [3], Garuda [16],
and Equalizer [5]. These systems each seek to composite
the video output from several sources and render it to a
single large display or multiple tiled displays. Despite their
efficiency, each system still talks to the attached displays as
a framebuffer forcing the composited video to be then split
amongst displays. A single large NDDI Display can easily be
leveraged allowing the sources to write to their own regions
of the Frame Volume and Coefficient Planes.

Research into acceleration of large format video on dis-
plays has focused primarily on embedding codecs into dis-
plays in support of signaling standards such as DPVL [21].
However, certain aspects of video decoding are “embarrass-
ingly parallel” and so GPUs have been leveraged to aid in
video decoding [9]. While embedding a GPU on a display
can be promising, it raises the abstraction significantly com-
pared to NDDI, which provides basic DCT support at a
much lower abstraction.

Perhaps the most similar research in the area is that of
the embedded display processor described in the Embedded
Function Composition system [23]. This research addresses
many of the same challenges as NDDI with a much more so-
phisticated approach resembling older systems such as Pixel
Planes. While is may prove to be more flexible than NDDI,
the abstraction is again quite a bit higher and is therefore
less suitable as a “narrow waist”.

7. CONCLUSIONS AND FUTURE WORK
In prior experiments, NDDI provided little benefit for full

screen video when the NDDI Display was configured with-
out regard to application-level framing. Our extension to
the NDDI architecture for blending was highly effective for
enabling considerable data transmission reduction for full
screen video by blending pre-rendered basis functions for
each of the 8× 8 blocks. With these new extensions, NDDI
proved versatile for implementing rate control while maxi-
mizing quality, especially for very high resolution 4K video.
Despite only using intra-frame data rate control, we were
able to maintain strong PSNR under much smaller bud-
gets than any of the earlier experiments. In doing so, we
discovered trends in the Multiscale DCT Tiler performance
given particular video frame content and types of motion.
Future work will employ more realistic inter-frame rate con-
trol while supporting mixed media display content as we
move into even more specialized uses cases with greater
application-level framing.

8. REFERENCES
[1] D. D. Clark and D. L. Tennenhouse. Architectural

considerations for a new generation of protocols. ACM
SIGCOMM Computer Communication Review,
20(4):200–208, 1990.

[2] T. W. Crockett. An introduction to parallel rendering.
Parallel Computing, 23(7):819–843, July 1997.

[3] M. Deering and D. Naegle. The SAGE Graphics
Architecture. In Proceedings of the 29th Annual
Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’02, pages 683–692, New
York, NY, USA, 2002. ACM.

[4] Digital visual interface dvi revision 1.0. Digital
Display Working Group, April 1999.

[5] S. Eilemann, M. Makhinya, and R. Pajarola.
Equalizer: a scalable parallel rendering framework. In
ACM SIGGRAPH ASIA 2008 courses on -
SIGGRAPH Asia ’08, SIGGRAPH Asia ’08, pages
1–14, New York, New York, USA, 2008. ACM Press.

[6] P. C. Electronics, B. V. International, S. Image,
S. Corporation, and T. Corporation. High-Definition
Multimedia Interface, 2006.

[7] C. D. Estes and K. Mayer-Patel. The n-Dimensional
Display Interface A More Elastic Narrow Waist for the
Display Pipeline. In MMSYS, 2012.

[8] H. Fuchs, J. Goldfeather, J. P. Hultquist, S. Spach,
J. D. Austin, F. P. Brooks Jr., J. G. Eyles, and
J. Poulton. Fast Spheres, Shadows, Textures,
Transparencies, and Imgage Enhancements in
Pixel-planes. SIGGRAPH Comput. Graph.,
19(3):111–120, July 1985.

[9] B. Han and B. Zhou. Efficient video decoding on
GPUs by point based rendering. Proceedings of the

21st ACM SIGGRAPH/EUROGRAPHICS symposium
on Graphics hardware - GH ’06, page 79, 2006.

[10] High-definition multimedia interface specification
version 1.3a. HDMI Founders, November 2006.

[11] G. Humphreys, M. Houston, R. Ng, R. Frank,
S. Ahern, P. D. Kirchner, and J. T. Klosowski.
Chromium: a stream-processing framework for
interactive rendering on clusters. In Proceedings of the
29th annual conference on Computer graphics and
interactive techniques - SIGGRAPH ’02, SIGGRAPH
’02, page 693, New York, New York, USA, 2002. ACM
Press.

[12] B. D. Lucas and T. Kanade. An Iterative Image
Registration Technique with an Application to Stereo
Vision. Imaging, 130(x):674–679, 1981.

[13] U. McMillan, L. (Sun Microsystems Inc., Research
Triangle Park, NC and L. Westover. A
forward-mapping realization of the inverse discrete
cosine transform. In Data Compression Conference,
pages 219 – 228, Snowbird, UT, USA, 1992.

[14] T. H. Myer and I. E. Sutherland. On the design of
display processors, 1968.

[15] M. Nelson. The Data Compression Book. M&T Books,
San Mateo, CA, 1992.

[16] H. Nirnimesh (Institute of Information Technology,
P. Harish, and P. Narayanan. Garuda: A Scalable
Tiled Display Wall Using Commodity PCs.
Visualization and Computer Graphics, IEEE
Transactions on, 13(5):864 – 877, 2007.

[17] K. A. Perrine and D. R. Jones. Parallel graphics and
interactivity with the scaleable graphics engine. In
Proceedings of the 2001 ACM/IEEE conference on
Supercomputing (CDROM) - Supercomputing ’01,
Supercomputing ’01, pages 5–5, New York, New York,
USA, 2001. ACM Press.

[18] R. Shoup. SuperPaint: an early frame buffer graphics
system. IEEE Annals of the History of Computing,
23(2), 2001.

[19] G. Stoll, M. Eldridge, D. Patterson, A. Webb,
S. Berman, R. Levy, C. Caywood, M. Taveira,
S. Hunt, and P. Hanrahan. Lightning-2: A
High-performance Display Subsystem for PC Clusters.
In Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques,
number August in SIGGRAPH ’01, pages 141–148,
New York, NY, USA, 2001. ACM.

[20] B. Sung, S. H. Hwang, and V. Da Costa. DVI: A
Standard for the Digital Monitor Interface, 1999.

[21] Vesa dpvl software interface standard: Version 1.
Video Electronics Standards Association, February
2006.

[22] Vesa displayport: Version 1.1. Video Electronics
Standards Association, April 2007.

[23] T. Whitted, J. Kajiya, E. Ruf, and R. Bittner.
Embedded Function Composition. In Proceedings of
the Conference on High Performance Graphics 2009,
HPG ’09, pages 47–50, New York, NY, USA, 2009.
ACM.

