
n-Dimensional Display Interface

Charles D. Estes
University of North Carolina at Chapel Hill

Brooks Computer Science Building, CB 3175
Chapel Hill, NC 27599-3175 USA

cdestes@cs.unc.edu

ABSTRACT
The n-Dimensional Display Interface is a display abstraction
conceived from first principles with the intention of replacing
the framebuffer as a new “narrow waist” for modern display
pipelines.

Keywords
Display interface, framebuffer, scalable display

1. INTRODUCTION
Modern display use cases are dramatically pushing the

limits of data transmission requiring higher channel capac-
ity to meet their needs.[1] The growing trend of televisions
with UltraHD spatial resolutions brings steep requirements.
HDMI 1.4 [2] allows for 4096x2160 at 30 Hz with 48 bits/pixel
requiring an uncompressed channel capacity of 12.15 Gbps.
Emerging 8K use cases at higher 60 Hz refresh rates will
then increase that by nearly an order of magnitude. Refresh
rates likely will not stop at 60 Hz either, as many common
LCD display panels can already refresh at 240 Hz. HDMI
1.4a [3] additionally handles 3D video at current HD stan-
dards while doubling the video output due to the need of
producing two stereoscopic images for every frame.

The digital display standards are still keeping pace with
these more traditional use cases, but the signaling require-
ments for the cables and connectors is getting increasingly
restrictive. Furthermore, they are all intended for scenar-
ios where the rendering device is connected to the display
within the same room. Both remote displays such as VNC
[4] and small wireless devices do not have the luxury of such
high channel capacities and of a guaranteed quality of ser-
vice. WirelessHD is addressing UltraHD video at 240 Hz
with 48 bits/pixel, but only over special wireless video area
networks (WVAN).[5] The Wi-Fi Alliance released a display
specification over Wi-Fi along with its Miracast device spec-
ification that allow the streaming of high definition content
of Wi-Fi networks.[6] Less traditional use cases such as re-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM ’16, October 15-19, 2016, Amsterdam, Netherlands

c© 2016 ACM. ISBN 978-1-4503-3603-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2964284.2971476

Framebu�er

X11

H.264
OpenGL

SVGHTML

RFB

CSS

GUI

NTSC
CGA

EGA
VGADVI

HDMI
DisplayPortWHDI

DPVL

Simple target

for graphics

applications

Easily serialized

by various display

technologies

Figure 1: The framebuffer has served as a narrow
waist for the display pipeline.

mote displays and massive display walls often require novel
solutions beyond the current standards.[7][8][9][10][11]

For the earliest computer display systems, the display in-
terface was carefully designed based both on display and
the attached host system. Such systems required a discrete
display generator to drive the electronics of the display and
a display processor to translate input form the host sys-
tem for the display generator. Early work to optimize these
display processors made tradeoffs between memory, channel
capacity, and physical connections to the display. These cus-
tom solutions offered little re-use as their designs were just
trips around the wheel of reincarnation.[12] With the emer-
gence of CRT displays, a new more obvious display interface
abstraction took shape, figuratively stopping the wheel.[13]
The framebuffer served as a “narrow waist” for the display
pipeline as computer graphics on the host system rapidly
advanced independently of the signaling standards on the
display side (figure 1). By all accounts, the framebuffer has
been a great success. Modern displays have digital trans-
mission standards that send compressed data, but nearly all
of them still scan the contents of a framebuffer at a fixed
refresh rate.

My research seeks to define a new, more flexible narrow
waist, just above the framebuffer in terms of complexity.
The concept was first introduced at NOSSDAV and later re-
fined in a full conference paper at MMSYS.[14][15] The sec-
ond phase of research published at ACMMM involved exten-
sions for blending that allowed me to use a novel approach
to video rendering on an nDDI display.[16] I am entering
into the third phase of my research. With several promising
directions available, I hope to use the Doctoral Symposium
to collaborate and narrow my focus.

Application x

y

Input Vector Coe!cient

Plane

Frame Volume

. . .

Display Panel

Display

Adapter

NDDI Display Device

NDDI

Engine

NDDI Link

Figure 2: NDDI concept diagram.

2. N-DIMENSIONAL DISPLAY INTERFACE
The n-Dimensional Display Interface is a new abstraction

from first principles. My goal for the research is to define a
new, future-proof abstraction that is:

• Framebuffer Compatible for simple applications

• Data-Driven avoiding any use of stateful logic

• Progressively Beneficial per application needs

• Highly Parallel allowing for ideal scalability

• Asynchronous avoiding timing constraints

nDDI defines an abstraction just above the framebuffer in
terms of complexity making it trivially compatible frame-
buffer. The primary strength of the interface is a highly
flexible addressing scheme; reducing the transmission cost
of both pixel data and the addressing information. This
is accomplished by creating a large pixel store on the dis-
play itself, called the frame volume (figure 2). The frame
volume can be configured by the driving application to any
dimensionality using n-tuples to address pixels, pixel strips,
planes, and n-volumes. This allows for efficient fill com-
mands and quick remapping of display pixel values to newly
arrived pixels or existing values in the frame volume. The
highly parallel mapping operations occur within the nddi en-
gine at each pixel site and are controlled by coefficient matri-
ces at each display location within the coefficient plane. The
entire operation is driven by the input vector. The length
of the vector is configured by the application. The mini-
mal length is two, where the x and y values are driven by
the nDDI engine and any additional values are driven by
the application. The mapping operation consists of a simple
matrix multiplication which multiplies the input vector by
the coefficient matrix for each location (x, y) where the x
and y values of the input vector are inherently set to the
same location (figure 3).

For basic framebuffer compatibility, an application can
configure the frame volume in two dimensions and set the
input vector to a length of two. Configuring those parame-
ters will determine the size of each coefficient matrix, 2 × 2
in this case. The application would initialize those coeffi-
cient matrices to an identity matrix and then simply write
to the frame volume as if it were a framebuffer at a refresh
rate of 60 Hz. Configuring an nDDI display in more sophis-
ticated ways can achieve a reduction in channel capacity.

Coe�cient

Plane

x

y

. . . Frame Volume

4 0 0 -2

0 1 0 5

0 0 1 0

Input Vector

5

4

11

5

10

29

11

=

4 0 0 -5

0 1 0 5

0 0 1 0

Figure 3: Example matrix multiplication for pixel
mapping.

. .
 .

1 0 0 0

0 1 0 0

0 0 1 0 Coe!cient

Matrices

Coe!cient Plane Frame Volume

(0, 0, 2)

0

x

y

2

1

Input

Vector

1 0 0 -1

0 1 0 0

0 0 1 0

1 0 0 -1

0 1 0 0

0 0 1 0

1 0 0 -1

0 1 0 -1

0 0 1 0

1

2

(i)

(C) (V)

(M)

Figure 4: Example NDDI Configuration for simple
video player with 4x scaling.

In the case of a video player, the application can configure
the frame volume in three dimensions with x and y dimen-
sions matching the video source and then some number of
frames in the z dimension for buffering (figure 4). Frames
are buffered into the frame volume, and the frames are ad-
vanced using the z value in the input vector. The physical
display can be larger that the video source, and so the co-
efficient matrices are configured as simple affine transforms
that map a source pixel from the video to multiple pixels on
the display.

3. DRIVING AN NDDI DISPLAY
My initial experiments sought to configure an nDDI dis-

play in novel ways to provide transmission savings while still
not utilizing any application level semantics. These Pixel
Bridge experiments simply looked at each frame of an input
video source and drove the display according to one of three
different modes.

• Framebuffer - Configured as a 2D framebuffer

• Flat Tiled - Configured as a 2D, tiled framebuffer

• Cached Tiled - Configured as a cache of tiles

Figure 5: Results for large recordings.

x

y

1

. .
 .

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

. . .

. . .

. . .

. . .

. . .

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

. . .

. . .

. . .

. . .

. . .

Input

Vector

Coe!cient

Matrices

Coe!cient Plane Frame Volume

(x’, y’, z)

(C) (V)

(M)

(i)

Figure 6: Cached tiler nDDI configuration.

The source videos were recorded video sessions and full
motion video clips. The results for the recorded compute
sessions are shown (figure 5) as a percentage ratio of the
pixels sent for each mode compared to that of 60 Hz signal.
Framebuffer Mode produced a basic 40% rate because it is
only updating the display at 24 fps vs. 60 Hz. Flat Tiled
produced a significant reduction at well under 10%. Cached
Tiled mode configured the frame volume as a deep cache
of tiles (figure 6) and produced a moderate improvement.
All of the results were compared against a Perfect mode
which was achieved simply by calculating the data needed
to update changed pixels without considering any addressing
information.

3.1 Video
For full motion video, my previous Pixel Bridge tiling

modes did not fare well. For video, I introduced a DCT tiled
mode that leveraged the semantics of video codecs to ren-
der the output video as a weighted blending of pre-rendered
8×8 DCT basis functions.[17] To achieve this blending, I ex-
perimented with three different blending modes and finally
settled on coefficient plane based blending. I extended the
single coefficient plane to 64 coefficient planes and added a
3-channel scaler alongside each of the coefficient matrices.
Blending in this manner works by performing all 64 map-
pings for a pixel location, multiplying each pixel channel

Figure 7: Revised video results with new DCT tiler.

by the associated scaler, summing each channel, and then
dividing by a configured max scaler value.

For the DCT tiled mode, the 64 pre-rendered 8 × 8 basis
functions were rendered into the frame volume. Then for
each frame, only the significant DC and AC coefficients were
transmitted. The results show a significant savings (figure
7). The previous cached tiler did not perform well even when
using a lossy matching scheme (Cached Tiled 4). DCT tiled
outperformed perfect with a very strong PSNR (∼ 40) at
the highest quality levels (DCT Tiled 1,4).

4. THE NEXT PHASE
I have conducted some preliminary investigations into the

possible areas of research below. I strongly hope to use
this forum of the Doctoral Symposium to collaborate with
multimedia experts and researchers to narrow my focus and
pave the final path to my dissertation.

• Advanced nDDI Video - I introduced a trivial prediction-
residual decoder for the DCT tiler. I feel better rate
control and a new approach to caching predictions will
deliver even strong results.

• Mixed Multimedia Blending - Coefficient plane
blending is well suited for simple blending use cases.
I plan to add support for a per-pixel alpha channel in
the frame volume. Extending coefficient plane blend-
ing in this way remains highly parallel and provides
additional flexibility in terms of use cases supported:
masks, compositing, anti-aliasing, font smoothing, etc.

• Display Wall Simulation - Display walls are a strong
motivation behind the new nDDI abstraction, and I in-
tend to simulate a massive display wall using an nDDI
Link that will support multiple clients streaming con-
tent to the single nDDI display.

• Memory Modeling and Simulation - Extending
the architecture to support multiple coefficient planes
dramatically increased the memory requirements for
the nDDI display, however the access patterns are all
very regular and the memory can be localized to each
pixel. On the other hand, the frame volume access
patterns are much more dynamic. I hope to model
them further and to work out a practical and novel
caching scheme.

5. REFERENCES

[1] Benjamin Watson and David Luebke. The Ultimate
Display: Where Will All the Pixels Come From?
Computer, 38(8):54–61, aug 2005.

[2] High-definition multimedia interface specification
version 1.4. HDMI Founders, June 2009.

[3] High-definition multimedia interface specification
version 1.4a extraction of 3d portion. HDMI Founders,
March 2010.

[4] T Richardson, Q Stafford-Fraser, K R Wood, and
A Hopper. Virtual network computing. IEEE Internet
Computing, 2(1):33–38, 1998.

[5] Wirelesshd specification version 1.1 overview, May
2010.

[6] Wi-Fi Alliance. Best Practices Document for Wi-Fi
CERTIFIED Miracast l Devices version 1.0, 2014.

[7] Greg Humphreys, Mike Houston, Ren Ng, Randall
Frank, Sean Ahern, Peter D. Kirchner, and James T.
Klosowski. Chromium: a stream-processing framework
for interactive rendering on clusters. In Proceedings of
the 29th annual conference on Computer graphics and
interactive techniques - SIGGRAPH ’02, SIGGRAPH
’02, page 693, New York, New York, USA, 2002. ACM
Press.

[8] Nirnimesh, P. Harish, and P.J. Narayanan. Garuda: A
Scalable Tiled Display Wall Using Commodity PCs.
Visualization and Computer Graphics, IEEE
Transactions on, 13(5):864 – 877, 2007.

[9] R. Singh, L. Renambot, A. Johnson, and J. Leigh.
TeraVision: a distributed, scalable, high resolution
graphics streaming system. In IEEE International
Conference on Cluster Computing (IEEE Cat.
No.04EX935), pages 391–400. IEEE, 2004.

[10] Byungil Jeong, Luc Renambot, Ratko Jagodic,
Rajvikram Singh, Julieta Aguilera, Andrew Johnson,
and Jason Leigh. High-Performance Dynamic
Graphics Streaming for Scalable Adaptive Graphics
Environment. In ACM/IEEE SC 2006 Conference
(SC’06), pages 24–24. IEEE, nov 2006.

[11] Jianli Luo, Kaihuai Qin, Yanxia Zhou, Miao Mao, and
Ruirui Li. GPU rendering for tiled multi-projector
autostereoscopic display based on chromium. In Visual
Computer, volume 26, pages 457–465, 2010.

[12] T. H. Myer and I. E. Sutherland. On the design of
display processors, 1968.

[13] Robert L. Myers. Display Interfaces: Fundamentals
and Standards. Series in Display Technology. Wiley,
2003.

[14] Charles D Estes and Ketan Mayer-Patel. Moving
beyond the framebuffer. Proceedings of the 21st
international workshop on Network and operating
systems support for digital audio and video -
NOSSDAV ’11, page 93, 2011.

[15] Charles D Estes and Ketan Mayer-Patel. The
n-Dimensional Display Interface A More Elastic
Narrow Waist for the Display Pipeline. In MMSYS,
2012.

[16] Charles D Estes and Ketan Mayer-Patel. Video Killed
The Data Store Extending the n-Dimensional Display
Interface for Full Screen Video. In ACM Multimedia,
Brisbane, Australia, 2015.

[17] McMillan, L. (Sun Microsystems Inc., Research
Triangle Park, NC, USA) and L. Westover. A
forward-mapping realization of the inverse discrete
cosine transform. In Data Compression Conference,
pages 219 – 228, Snowbird, UT, USA, 1992.

[18] Vesa digital packet video link standard: Version 1.
Video Electronics Standards Association, April 2004.

[19] Mitsubishi electric diamond vision is dallas cow-
boys’ choice for new stadium. Press Release, April 2008.
http://www.businesswire.com/news/home/20080416005327/en.

[20] Ibm introduces world’s highest-resolution computer
monitor. Press Release, June 2001. http://www-
03.ibm.com/press/us/en/pressrelease/1180.wss.

[21] The insane hardware driving the world’s biggest led
billboard. website.
http://gizmodo.com/#!5096475/the-insane-hardware-
driving-the-worlds-biggest-led-billboard.

[22] New displayport 1.4 standard can drive 8k monitors
over a usb type-c cable. website.
http://arstechnica.com/gadgets/2016/03/new-
displayport-1-4-standard-can-drive-8k-monitors-over-
a-usb-type-c-cable/.

[23] Robert W Scheifler and Jim Gettys. The x window
system. ACM Trans Graph, 5(2):79–109, 1986.

[24] Tristan Richardson, Frazer Bennett, Glenford Mapp,
and Andy Hopper. A ubiquitous, personalized
computing environment for all: Teleporting in an X
Window System Environment. IEEE Personal
Communications, 1(3):6–12, 1994.

[25] Kenneth (IBM T.J. Watson Research Center
Ocheltree, Steven (IBM T.J. Watson Research Center
Millman, David (Teradici Corporation) Hobbs, Jason
(Columbia University) Nieh, and Ricardo
(Columbia University) Baratto. Net2Display: A
Proposed VESA Standard for Remoting Displays and
I/O Devices over Networks. In ADEAC, 2006.

[26] F. Jutand, Z.J. Mou, and N. Demassieux. DCT
architectures for HDTV. 1991., IEEE International
Sympoisum on Circuits and Systems, pages 196–199,
1991.

[27] Henry Fuchs. Distributing a Visible Surface Algorithm
Over Multiple Processors. In Proceedings of the 1977
annual conference on - ACM ’77, pages 449–451, 1977.

[28] Henry Fuchs, Jack Goldfeather, Jeff P Hultquist,
Susan Spach, John D Austin, Frederick P Brooks Jr.,
John G Eyles, and John Poulton. Fast Spheres,
Shadows, Textures, Transparencies, and Image
Enhancements in Pixel-planes. SIGGRAPH Comput.
Graph., 19(3):111–120, July 1985.

[29] Steven Molnar, John Eyles, and John Poulton.
PixelFlow: high-speed rendering using image
composition. In Proceedings of the 19th annual
conference on Computer graphics and interactive
techniques - SIGGRAPH ’92, SIGGRAPH ’92, pages
231–240, New York, New York, USA, 1992. ACM
Press.

[30] Turner Whitted, Jim Kajiya, Erik Ruf, and Ray
Bittner. Embedded Function Composition. In
Proceedings of the Conference on High Performance
Graphics 2009, HPG ’09, pages 47–50, New York, NY,
USA, 2009. ACM.

