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ABSTRACT
The n-Dimensional Display Interface is a display abstraction
conceived from first principles with the intention of replacing
the framebuffer as a new “narrow waist” for modern display
pipelines.
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1. INTRODUCTION
Modern display use cases are dramatically pushing the

limits of data transmission requiring higher channel capac-
ity to meet their needs.[1] The growing trend of televisions
with UltraHD spatial resolutions brings steep requirements.
HDMI 1.4 [2] allows for 4096x2160 at 30 Hz with 48 bits/pixel
requiring an uncompressed channel capacity of 12.15 Gbps.
Emerging 8K use cases at higher 60 Hz refresh rates will
then increase that by nearly an order of magnitude. Refresh
rates likely will not stop at 60 Hz either, as many common
LCD display panels can already refresh at 240 Hz. HDMI
1.4a [3] additionally handles 3D video at current HD stan-
dards while doubling the video output due to the need of
producing two stereoscopic images for every frame.

The digital display standards are still keeping pace with
these more traditional use cases, but the signaling require-
ments for the cables and connectors is getting increasingly
restrictive. Furthermore, they are all intended for scenar-
ios where the rendering device is connected to the display
within the same room. Both remote displays such as VNC
[4] and small wireless devices do not have the luxury of such
high channel capacities and of a guaranteed quality of ser-
vice. WirelessHD is addressing UltraHD video at 240 Hz
with 48 bits/pixel, but only over special wireless video area
networks (WVAN).[5] The Wi-Fi Alliance released a display
specification over Wi-Fi along with its Miracast device spec-
ification that allow the streaming of high definition content
of Wi-Fi networks.[6] Less traditional use cases such as re-
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Figure 1: The framebuffer has served as a narrow
waist for the display pipeline.

mote displays and massive display walls often require novel
solutions beyond the current standards.[7][8][9][10][11]

For the earliest computer display systems, the display in-
terface was carefully designed based both on display and
the attached host system. Such systems required a discrete
display generator to drive the electronics of the display and
a display processor to translate input form the host sys-
tem for the display generator. Early work to optimize these
display processors made tradeoffs between memory, channel
capacity, and physical connections to the display. These cus-
tom solutions offered little re-use as their designs were just
trips around the wheel of reincarnation.[12] With the emer-
gence of CRT displays, a new more obvious display interface
abstraction took shape, figuratively stopping the wheel.[13]
The framebuffer served as a “narrow waist” for the display
pipeline as computer graphics on the host system rapidly
advanced independently of the signaling standards on the
display side (figure 1). By all accounts, the framebuffer has
been a great success. Modern displays have digital trans-
mission standards that send compressed data, but nearly all
of them still scan the contents of a framebuffer at a fixed
refresh rate.

My research seeks to define a new, more flexible narrow
waist, just above the framebuffer in terms of complexity.
The concept was first introduced at NOSSDAV and later re-
fined in a full conference paper at MMSYS.[14][15] The sec-
ond phase of research published at ACMMM involved exten-
sions for blending that allowed me to use a novel approach
to video rendering on an nDDI display.[16] I am entering
into the third phase of my research. With several promising
directions available, I hope to use the Doctoral Symposium
to collaborate and narrow my focus.
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Figure 2: NDDI concept diagram.

2. N-DIMENSIONAL DISPLAY INTERFACE
The n-Dimensional Display Interface is a new abstraction

from first principles. My goal for the research is to define a
new, future-proof abstraction that is:

• Framebuffer Compatible for simple applications

• Data-Driven avoiding any use of stateful logic

• Progressively Beneficial per application needs

• Highly Parallel allowing for ideal scalability

• Asynchronous avoiding timing constraints

nDDI defines an abstraction just above the framebuffer in
terms of complexity making it trivially compatible frame-
buffer. The primary strength of the interface is a highly
flexible addressing scheme; reducing the transmission cost
of both pixel data and the addressing information. This
is accomplished by creating a large pixel store on the dis-
play itself, called the frame volume (figure 2). The frame
volume can be configured by the driving application to any
dimensionality using n-tuples to address pixels, pixel strips,
planes, and n-volumes. This allows for efficient fill com-
mands and quick remapping of display pixel values to newly
arrived pixels or existing values in the frame volume. The
highly parallel mapping operations occur within the nddi en-
gine at each pixel site and are controlled by coefficient matri-
ces at each display location within the coefficient plane. The
entire operation is driven by the input vector. The length
of the vector is configured by the application. The mini-
mal length is two, where the x and y values are driven by
the nDDI engine and any additional values are driven by
the application. The mapping operation consists of a simple
matrix multiplication which multiplies the input vector by
the coefficient matrix for each location (x, y) where the x
and y values of the input vector are inherently set to the
same location (figure 3).

For basic framebuffer compatibility, an application can
configure the frame volume in two dimensions and set the
input vector to a length of two. Configuring those parame-
ters will determine the size of each coefficient matrix, 2 × 2
in this case. The application would initialize those coeffi-
cient matrices to an identity matrix and then simply write
to the frame volume as if it were a framebuffer at a refresh
rate of 60 Hz. Configuring an nDDI display in more sophis-
ticated ways can achieve a reduction in channel capacity.
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Figure 3: Example matrix multiplication for pixel
mapping.
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Figure 4: Example NDDI Configuration for simple
video player with 4x scaling.

In the case of a video player, the application can configure
the frame volume in three dimensions with x and y dimen-
sions matching the video source and then some number of
frames in the z dimension for buffering (figure 4). Frames
are buffered into the frame volume, and the frames are ad-
vanced using the z value in the input vector. The physical
display can be larger that the video source, and so the co-
efficient matrices are configured as simple affine transforms
that map a source pixel from the video to multiple pixels on
the display.

3. DRIVING AN NDDI DISPLAY
My initial experiments sought to configure an nDDI dis-

play in novel ways to provide transmission savings while still
not utilizing any application level semantics. These Pixel
Bridge experiments simply looked at each frame of an input
video source and drove the display according to one of three
different modes.

• Framebuffer - Configured as a 2D framebuffer

• Flat Tiled - Configured as a 2D, tiled framebuffer

• Cached Tiled - Configured as a cache of tiles



Figure 5: Results for large recordings.
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Figure 6: Cached tiler nDDI configuration.

The source videos were recorded video sessions and full
motion video clips. The results for the recorded compute
sessions are shown (figure 5) as a percentage ratio of the
pixels sent for each mode compared to that of 60 Hz signal.
Framebuffer Mode produced a basic 40% rate because it is
only updating the display at 24 fps vs. 60 Hz. Flat Tiled
produced a significant reduction at well under 10%. Cached
Tiled mode configured the frame volume as a deep cache
of tiles (figure 6) and produced a moderate improvement.
All of the results were compared against a Perfect mode
which was achieved simply by calculating the data needed
to update changed pixels without considering any addressing
information.

3.1 Video
For full motion video, my previous Pixel Bridge tiling

modes did not fare well. For video, I introduced a DCT tiled
mode that leveraged the semantics of video codecs to ren-
der the output video as a weighted blending of pre-rendered
8×8 DCT basis functions.[17] To achieve this blending, I ex-
perimented with three different blending modes and finally
settled on coefficient plane based blending. I extended the
single coefficient plane to 64 coefficient planes and added a
3-channel scaler alongside each of the coefficient matrices.
Blending in this manner works by performing all 64 map-
pings for a pixel location, multiplying each pixel channel

Figure 7: Revised video results with new DCT tiler.

by the associated scaler, summing each channel, and then
dividing by a configured max scaler value.

For the DCT tiled mode, the 64 pre-rendered 8 × 8 basis
functions were rendered into the frame volume. Then for
each frame, only the significant DC and AC coefficients were
transmitted. The results show a significant savings (figure
7). The previous cached tiler did not perform well even when
using a lossy matching scheme (Cached Tiled 4). DCT tiled
outperformed perfect with a very strong PSNR (∼ 40) at
the highest quality levels (DCT Tiled 1,4).

4. THE NEXT PHASE
I have conducted some preliminary investigations into the

possible areas of research below. I strongly hope to use
this forum of the Doctoral Symposium to collaborate with
multimedia experts and researchers to narrow my focus and
pave the final path to my dissertation.

• Advanced nDDI Video - I introduced a trivial prediction-
residual decoder for the DCT tiler. I feel better rate
control and a new approach to caching predictions will
deliver even strong results.

• Mixed Multimedia Blending - Coefficient plane
blending is well suited for simple blending use cases.
I plan to add support for a per-pixel alpha channel in
the frame volume. Extending coefficient plane blend-
ing in this way remains highly parallel and provides
additional flexibility in terms of use cases supported:
masks, compositing, anti-aliasing, font smoothing, etc.

• Display Wall Simulation - Display walls are a strong
motivation behind the new nDDI abstraction, and I in-
tend to simulate a massive display wall using an nDDI
Link that will support multiple clients streaming con-
tent to the single nDDI display.

• Memory Modeling and Simulation - Extending
the architecture to support multiple coefficient planes
dramatically increased the memory requirements for
the nDDI display, however the access patterns are all
very regular and the memory can be localized to each
pixel. On the other hand, the frame volume access
patterns are much more dynamic. I hope to model
them further and to work out a practical and novel
caching scheme.
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