
Moving Beyond the Framebuffer

Charles D. Estes
University of North Carolina at Chapel Hill

Brooks Computer Science Building, CB 3175
Chapel Hill, NC 27599-3175 USA

cdestes@cs.unc.edu

Ketan Mayer-Patel
University of North Carolina at Chapel Hill

Brooks Computer Science Building, CB 3175
Chapel Hill, NC 27599-3175 USA

kmp@cs.unc.edu

ABSTRACT
This paper explores a new abstraction to replace the frame-
buffer as the metaphor for a new display interface. Our novel
approach aims to provide backward compatibility with ap-
plications that require a simple framebuffer, while also pro-
viding tremendous channel capacity savings to applications
that exploit application level semantics to use the display in-
terface in a more sophisticated way. The goal is to develop
a versatile interface that scales from very large displays to
small, low-power displays connected over wireless links.

Categories and Subject Descriptors
C.0 [General]: Hardware/software interfaces

General Terms
Design, Algorithms, Performance, Experimentation

Keywords
Display interface, framebuffer, scalable display

1. LEGACY OF THE FRAMEBUFFER
Since the rise of raster displays, the framebuffer, as a con-

cept, has been the predominant abstraction for display in-
terfaces. The earliest personal computers either adopted the
television for display purposes or integrated a cathode ray
tube (CRT) display as part of the computer. The frame-
buffer as an abstraction was a logical extension of the row-
wise scanning of pixels performed in order to generate an
analog signal compatible with existing television standards
and CRT-based components.

The modular design of the IBM PC and its clones in-
troduced the display adapter as an interface to the display
as a peripheral resource. The software drivers for the dis-
play adapter formalized the framebuffer as a software con-
struct. The separation of the display as a distinct and some-
what independent component was important because ad-
vances in CPU technologies generally outpace advances in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’11, June 1–3, 2011, Vancouver, British Columbia, Canada.
Copyright 2011 ACM 978-1-4503-0752-9/11/06 ...$10.00.

display technologies. This allows the CPU to be upgraded
or replaced without requiring the purchase of a new display.
Likewise, if and when display technologies advance, only the
display adapter and monitor need be replaced.

Analog display technologies were slow to evolve because
any advance in resolution and/or frame rate required the de-
velopment and adoption of new signaling and cabling stan-
dards for the analog signal driving the display. IBM led the
industry through a series of such advances in analog signal-
ing with the development of CGA in 1981, EGA in 1984,
VGA in 1987, and XVGA in 1991[9]. These analog display
interface standards were so pervasive, that the earliest dig-
ital flat panel displays used the same interfaces despite the
fact that these displays were not analog devices.

2. MODERN DISPLAY CHALLENGES
For the most part, digital display technologies such as liq-

uid crystal displays (LCDs), digital light projectors (DLPs),
and plasma displays have completely supplanted CRT-based
analog displays. Modern digital display interface standards
include Digital Visual Interface (DVI), High-Definition Mul-
timedia Interface (HDMI)[4], and DisplayPort[1][15]. While
these protocols directly support digital displays, they all es-
sentially mimic their analog predecessors by continuously
packaging the framebuffer and transporting it at the spec-
ified refresh rate. Unfortunately, like their analog prede-
cessors, these standards will not be able to keep pace with
trends in display technologies and emerging innovations in
how displays are used. These challenges include:

• Increased resolution - While 1080p is a common na-
tive resolution for many displays, this particular spa-
tial format is popular because it matches current high-
definition video standards. Higher resolution displays
are common in computer applications and there are
few technical barriers to prevent the manufacture of
digital displays with spatial formats as high as 3840x2400
(WQUXGA)[6].

• Higher refresh rates - Many LCD HDTVs today are
advertised as being able to support refresh rates of up
to 240 Hz.

• 3D television - The HDMI 1.4a specification allows
for 3D over HDMI, but it stops short of full 1080p at 60
Hz support[5]. True stereo 3D television will require a
pair of images for each supported viewpoint. One can
easily imagine future scenarios with tens of supported
viewpoints.

• Large-scale displays - Scalable display walls and
jumbotrons currently involve stitching together sepa-
rate panels driven by individual display adapters[7][10][2].
The jumbotron in Cowboy’s Stadium uses HDTV video
sources to drive its panels despite the fact that the na-
tive format of these displays is more than 5x larger[8].
One of the reasons why such a large display is be-
ing under-utilized is the complexity and bandwidth
involved in trying to drive it at a resolution that is
at the same scale as its physical size. The Walgreen’s
billboard in Times Square, for example, requires a 48-
drive RAID disc streaming data at 3.2 GB/s to drive
its 17,000 square foot billboard at a spatial format of
10,000 x 4,000[3].

• Low-power mobile displays - Mobile displays face
similar challenges on a different scale. A popular cur-
rent example is HD video playback on tablets. A tablet
with a 1280 x 800 pixel display and 16 bits per pixel
will require 512 kB per frame. At 24 frames/sec, this
requires a channel capacity of 400 Mbps, easily exceed-
ing the capacity of mobile data links. Video compres-
sion combats this but at the cost of reduced battery
life due to decoding the video at the tablet[11].

• Remote displays - Remotely connected display re-
sources must overcome mismatches between the band-
width required to transmit the framebuffer and the
bandwidth available which is subject to fluctuating
network conditions and congestion control. A com-
mon solution is to employ a remote display applica-
tion such as Virtual Network Computing (VNC)[13]
to avoid transmitting parts of the display that are not
changing. This solution essentially requires integrating
a computer in the display in order to execute the re-
mote client. Similarly, kiosk displays are often driven
by a dedicated collocated computer which is then man-
aged remotely in order to transfer and control content.

In our opinion, the framebuffer as an abstraction for dis-
play resources has reached the limits of its scalability. In or-
der to support future advances in spatial formats and refresh
rates as well as innovative uses for displays, a new abstrac-
tion needs to be considered. We can no longer afford the
cost of repeatedly copying out the entire framebuffer tens or
hundreds of times per second inherited as the legacy of the
framebuffer. This paper presents early work in progress for
what such a new abstraction could look like. We start with
a clean-slate design derived from first principles that incor-
porates lessons learned from the framebuffer’s legacy. One
of the key features of our proposed design is that it allows
processes at higher levels of the system such as applications,
GUI toolkits, graphics libraries, etc. to leverage high-level
semantics in order to most efficiently and flexibly make use
of display resources.

The rest of this paper is organized into seven additional
sections, in which we explore our search for a new abstrac-
tion, outline the design principles that emerged from that
search, detail our design, illustrate several use cases for our
design, and present a key use case experiment and results.

3. CHOOSING A NEW ABSTRACTION
Consider the exercise of evaluating well-known software

abstractions as candidates for a new abstraction for display

Framebu�er

Window Display Protocol: X Windows System

Video Codec: Theora, H.264, WebM

2D/3D: OpenGL

Graphics Markup: SVG

Web Markup: HTML, CSS

GUI Toolkit: Qt, Swing, Cocoa

Flexibility,

Channel Capacity

Implementation

Complexity

Remote Framebu�er: VNC

Figure 1: Sample software abstractions.

resources. Several possibilities are shown in Figure 1. First,
we note that there is a general tradeoff between channel ef-
ficiency and flexibility against implementation complexity.
High-level complex abstractions can communicate display
updates efficiently for content that matches the data model
for which that abstraction was designed for. However, flex-
ibility is decreased such that any content that is outside of
the data model becomes very difficult to communicate effi-
ciently.

For instance, it is unreasonable to build a display based on
HTTP, webkit, and Javascript for obvious reasons of com-
plexity as well as the implicitly limited flexibility of such
a display. While such a display abstraction might provide
scalability and throughput savings for web-based applica-
tions, any advantage is quickly lost once outside of the ab-
straction’s domain. For example, a high-performance video
game.

Window managers based on X[14] represent another ab-
straction with high implementation complexity due to the
need to support features such as z-ordering, blending, fo-
cus, and cursors. Furthermore, limited or highly variable
bandwidth will severely affect performance.

One reasonably flexible abstraction is the popular remote
display application, VNC, which requires that the host ma-
chine use a VNC server to monitor framebuffer changes.
It sends those encoded changes to a remote VNC client
leveraging the Remote Framebuffer (RFB) protocol. While
very efficient for coherent display content where changes
are concentrated into small areas, such an abstraction will
not gracefully handle highly dynamic content such as video
and/or gaming. Furthermore, VNC and RFB are still some-
what complex to implement, effectively requiring the display
to utilize a microprocessor to support the VNC client.

Net2Display is a recent specification from VESA that pro-
vides an official standard for remoting displays, competing to
replace VNC, Microsoft Remote Desktop Protocol (RDP),
Citrix ICA, and others[12]. One of the key differentiators
of the Net2Display standard, is that it accommodates dedi-
cated display devices connected over an IP-based link. The
Net2Display standard is primarily an architecture that spec-
ifies a minimum feature set in order to best encourage in-
teroperability. While this “minimal feature set” may make
Net2Display easier to embed in a display, it effectively makes
these devices less capable[16].

4. DESIGN PRINCIPLES
In this section, we articulate a number of design principles

that a new display abstraction should embody. A primary
lesson from the legacy of the framebuffer is that major de-
sign shifts are infrequent. Thus, any such design needs to
be reasonably simple and highly adaptable in order to ac-

commodate a wide range of applications and future needs.
It was to that end that we developed the following set of
design principles.

4.1 No Computational State Machine
In considering other possible display interface abstrac-

tions, we find that most require some form of a computa-
tional state machine, whether it be a general purpose pro-
cessor to support a VNC-like client or a highly specialized
graphics/multimedia processor to support codecs and/or per-
form higher-order graphics commands. Specifying display
hardware that leverages some form of a computational state
machine can yield dramatic benefits, but it will consume
far more power than a solution that employs simple digital
logic. Power consumption may not be a major concern of
large home theater displays, but it is a major constraint for
a mobile displays using an energy efficient technology like
electronic paper (EPD). Thus, the first design principle is
that our new abstraction must not require a computational
state machine.

4.2 Highly Parallel
While a state machine based design must address scala-

bility by using ever increasing clock rates for the underlying
processor, a design based on simpler digital logic scales eas-
ily if parallelism is brought to bear. Therefore we identify
high parallelism as another key design principle. It should
be possible to update every pixel on the display simultane-
ously via highly parallel digital logic.

4.3 Asynchronous
One consequence of forgoing a computational state ma-

chine and adopting high parallelism, is the ability to embrace
asynchrony as a design principle. Allowing asynchrony de-
couples the data rate of the display interface and the refresh
rate of the display panel. This is an important consideration
because it supports use cases in which quality of service for
the connection to the display is either constrained or highly
variable. Furthermore, the system can be made more energy
efficient by only performing calculations and updating the
display when new display data arrives.

4.4 Framebuffer Compatible
The framebuffer abstraction is deeply established and will

not be quickly abandoned as a supported abstraction. Its
simple elegance and ubiquity in today’s software makes it
a compelling method for interacting with our new display
interface as well. Furthermore, adopting framebuffer com-
patibility as a design principle better allows for a staged
adoption of the new abstraction.

4.5 Progressive Benefit
Recalling the discussion in section 3, there is a general

tradeoff between the complexity of an abstraction and the
channel capacity required to support it. The more we lever-
age application knowledge about how display resources are
being used, the more compactly we can describe and rep-
resent the data required to drive the display. Furthermore,
this semantic knowledge can be used to help negotiate ap-
propriate adaptations to fluctuating or constrained channel
resources. Thus, another design principle that we espouse is
that the proposed abstraction provide a progressive benefit
when higher-level application semantics are known.

Application x

y

Input Vector Coe!cient

Plane

Frame Volume

. . .

Display Panel

Display

Adapter

NDDI Display Device

NDDI

Engine

NDDI Link

Figure 2: NDDI concept diagram.

5. N-DIMENSIONAL DISPLAY INTERFACE
In this section, we present the design of our proposed dis-

play abstraction, the n-Dimensional Display Interface (NDDI).
The NDDI is comprised of the following components:

• The Frame Volume

• The Coefficient Plane

• The Input Vector

• The NDDI Engine

These components are illustrated abstractly in Figure 2.
The application in this diagram represents an agent using
the NDDI Display Device. The Display Adapter represents
an interface layer that the application drives much in the
same way current systems have a display adapter that pro-
vides an interface to the framebuffer. The NDDI Link repre-
sents the physical connection between the Display Adapter
and the NDDI Device. This physical link and the protocol
used to communicate over it are not described in this paper.
While an actual realization of NDDI would, of course, re-
quire specification of this link, for the exploratory purpose
of this paper, it can be thought of abstractly as a wired
or wireless connection capable of transmitting and receiving
data encapsulated within NDDI commands. The following
subsections describe each of the NDDI components in turn.

5.1 Frame Volume
NDDI expands on the idea of a display with “memory” of

its pixels. It does not utilize a fixed, two-dimensional frame-
buffer matching the format of the display panel. Instead it
specifies that a display has a frame volume. This frame vol-
ume is a very large piece of memory that holds pixel values
that can be mapped to the individual pixels on the display
panel in a variety of ways.

The frame volume can be configured to any dimension-
ality. In its simplest representation, it can be configured
as a two-dimensional framebuffer that represents the cur-
rent contents of the display. Another configuration might
add a third dimension that represents time, allowing a video
stream to buffer on the actual display itself. Exactly how
the frame volume is configured is one of the ways the NDDI
provides applications driving the display to take advantage
of higher-level semantic knowledge. In practice, applications
may never use more than three or four dimensions, and so
future implementations of NDDI may impose a limit.

5.2 Coefficient Plane
The dimensionality of the Frame Volume most often will

not match the display panel, and so the pixel values from
the Frame Volume must be mapped to the panel. NDDI
accomplishes this through the coefficient plane. The coeffi-
cient plane is a two-dimensional grid of coefficient matrices.
This grid matches the dimensions of the display panel. The
coefficient matrix at a particular x and y location in the co-
efficient plane is used in conjunction with the input vector
to pick a unique value from the Frame Volume in order to
display on the panel at the same x and y location.

5.3 Input Vector
The update process is driven by the input vector. The

input vector is a one-dimensional vector, with the first two
values reserved for the x and y position of a pixel. The
remaining values are optional and are specified by the appli-
cation. The x and y values are not driven by the application,
but rather by NDDI when it is computing output pixel val-
ues for the panel.

5.4 NDDI Engine
The three primary components of NDDI are effectively

memory stores. The digital logic that drives the process
of updating the display panel resides in the NDDI engine.
Any time the data in the input vector, coefficient plane,
or frame volume changes, the NDDI engine calculates the
updates to the display panel in parallel. The process begins
with the input vector. For each pixel, the NDDI engine 1)
sets the x and y value in the input vector, 2) multiplies the
input vector by the coefficient matrix at the corresponding
x and y location in the coefficient plane to produce a tuple
that matches the dimensionality of the frame volume, and
3) finally updates the display panel using the single pixel
value from the frame volume addressed by the tuple.

The following illustrates the calculation for a pixel at loca-
tion (7, 8). The coefficient matrix at that location in in the
coefficient plane is multiplied by the input vector with the x
and y values set to 7 and 8 to produce the tuple (8, 8, 2). The
pixel value at this location in the frame volume is displayed.1 0 0 1

0 1 0 0
0 0 1 2

7
8
0
1

 =

8
8
2

The NDDI interface reflects the design principles we iden-

tified in section 4. The NDDI mapping mechanism requires
only a simple set of matrix and addressing operations al-
lowing it to be implemented directly with digital logic. The
NDDI engine computes the value of each display pixel in pre-
cisely the same manner which makes the mechanism highly
parallel. NDDI is driven exclusively by the contents of its
various structures. Thus the NDDI engine only needs to re-
calculate output when data arrives, making it asynchronous.
If necessary, the NDDI structures can be configured in or-
der to mimic a framebuffer directly. This is done by sim-
ply configuring the frame volume to be a 2D structure that
matches the size of the display and setting the coefficient
planes to the identity matrix. Finally, NDDI provides a
progressive benefit to applications that are able to employ
higher-level semantics about how best to deploy and exploit
the NDDI structures. Several use cases that demonstrate
how this might be done are described in the next section.

6. USING APPLICATION SEMANTICS
While it is possible to configure an NDDI display as a

simple framebuffer, it will not produce throughput savings
beyond the benefit of being able to drive the display at fram-
erate other than the fixed refresh rate of a traditional display.
In order to realize a more dramatic throughput advantage,
the application must configure the NDDI display leveraging
higher-level semantics.

6.1 Example: Video Player
A video playback application might configure the frame

volume in three dimensions, with the x and y dimensions
matching the display panel and the z dimension representing
a buffered queue of frames. The buffering of frames would
allow the application to handle channel capacity fluctuations
when a fixed quality of service is unavailable. Additionally,
the application can use a previous frame in the frame volume
as the basis for the next frame by utilizing an inexpensive
copy command to copy the contents to another z plane and
then updating that new frame with only the changed pix-
els, mimicking the way a video codec would handle P and
I frames. The coefficient plane would consist of simple 3 x
3 identity matrices. The display updates would be driven
by an input vector with the default x and y values and a
third value representing the frame counter, c. The applica-
tion only needs to update that frame counter to display the
next frame. 1 0 0

0 1 0
0 0 1

xy
c

 =

xy
c

6.2 Example: Windowed User Interface

An application representing a computer desktop with a
windowed user interface might also configure the frame vol-
ume in three dimensions, with the third dimensions instead
being used as a cache for various windows. The x and y
dimensions of the frame volume would match the largest
window dimensions allowed and the pixel values for each
window would be stored at the origin of each xy plane in the
frame volume. The task of configuring the coefficient plane
would not be as simple as with the video player example,
because portions of several windows can be displayed simul-
taneously. In this case, the input vector would instead have
a 1 in the third value, and the coefficient matrices would be
updated with a w, tx, and ty values to choose and translate
the window. 1 0 tx

0 1 ty
0 0 w

xy
1

 =

x′

y′

w

6.3 Example: Web Tablet

A web tablet device could leverage NDDI to overcome sev-
eral challenges for tablet computers. Tablets are constrained
devices with large displays, diminished power supplies, lim-
ited processing power, and low-capacity wireless links. Their
large displays bring a higher level of interaction for the user,
so manufacturers strive to keep the web and multimedia con-
tent downloading, decoding, and rendering quickly. A web
tablet using NDDI could eschew a high-power CPU/GPU
and instead use an ASIC-based NDDI Engine combined with
slow, low-power RAM and a wireless modem to create a thin-
client. In a simple configuration, it could arrange the frame

volume in three dimensions with the third representing tabs.
The x and y dimensions could be larger than the display, al-
lowing more content outside of viewport to be buffered and
then rendered when the user scrolls the viewport. In this
configuration, the tabs would be modal, and so they would
be chosen and scrolled with b, tx, and ty.1 0 tx

0 1 ty
0 0 b

xy
1

 =

x′

y′

b

7. PIXEL BRIDGE EXPERIMENT

Our first proof-of-concept prototype of an NDDI display
is a software simulation using a driving application that we
call “Pixel Bridge”. Pixel Bridge is intended to interface ex-
isting legacy applications and as such is an important first
step. Pixel Bridge is like VNC in that it monitors frame-
buffer changes in order to identify areas of the display that
require updating. It does not employ higher-level applica-
tion semantics, but can marshall NDDI resources in a num-
ber of different ways in order to be as efficient as possible.
In this experiment, we recorded a number of computing ses-
sions and replayed them using Pixel Bridge and measure the
amount of throughput required.

7.1 Pixel Bridge Configurations
Pixel Bridge can be configured to operate in five different

modes. The first three modes employ progressively more
sophisticated configurations of the the NDDI display. The
last two modes are calculations that bound the performance.

• Framebuffer - Configured as a 2D framebuffer

• Flat Tiled - Configured as a 2D, tiled framebuffer

• Cached Tiled - Configured as a cache of tiles

• 60 Hz - Cost of full screen updates at 60Hz

• Ideal Pixel Latching - Cost of only changed pixels

7.1.1 Framebuffer Mode
When Pixel Bridge is in the Framebuffer mode, it config-

ures the frame volume with a dimensionality matching the
recorded computing session. The coefficient plane is initial-
ized so that each pixel on the display corresponds to the pixel
value in the frame volume at the same x and y location. The
input vector only has the default x and y values. For each
frame, the entire frame volume is updated. This is similar to
the 60 Hz mode, except that the Framebuffer mode is only
updated at the framerate of the recorded computing session.

7.1.2 Flat Tiled Mode
The Flat Tiled mode configures the frame volume and ini-

tializes the coefficient plane the same way as with the Frame-
buffer mode. However, it logically partitions the frames into
tiles. A CRC32 checksum of each tile is computed and com-
pared to the corresponding tile in the frame volume to de-
termine if that tile has changed. Only new tiles are updated.

7.1.3 Cached Tiled Mode
The final NDDI mode is the Cached Tiled mode. This

mode still logically partitions the frames into tiles, but it
configures the frame volume and coefficient plane differently

x

y

1

. .
 .

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z
. . .

. . .

. . .

. . .

. . .

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

1 0 tx

0 1 ty

0 0 z

. . .

. . .

. . .

. . .

. . .

Input

Vector

Coe!cient

Matrices

Coe!cient Plane Frame Volume

(x’, y’, z)

Figure 3: Cached tile mode NDDI configuration.

(see figure 3). The frame volume is configured in three di-
mensions, forming a cache of tiles. The x and y dimensions
match the tile dimensions. The z dimension is set to a value
representing the size of the cache. The coefficient plane is
then logically partitioned into tiles. The coefficient matrix
for each pixel in that logical tile maps to the pixel in the
frame volume with the matching x and y coordinate and a
z value for the particular tile in the cache.

The Cached Tiled mode shares the same advantages as
the Flat Tiled mode, but adds the ability to leverage the
cache to easily duplicate a tile at multiple locations on the
display and to re-use older tiles in the cache.

7.1.4 60 Hz and Ideal Pixel Latching Modes
These non-NDDI modes are not implemented in Pixel

Bridge as rendering modes, but rather are derived directly
from the frame content and frame rate. The 60 Hz mode
considers the number of frames and framerate of the origi-
nal recorded session. It then calculates how many bytes are
updated to the display if the display is updated at a constant
60 Hz rate. This should represent a worst-case performance
boundary for Pixel Bridge. The Ideal Pixel Latching mode
calculates only the number of bytes required to communi-
cate just those pixels that change in value from one frame to
the next. This mode completely disregards the obvious need
to address pixel locations when updating a pixel value, and
in doing so it serves as a theoretical, best-case boundary for
Pixel Bridge.

7.2 Experiment Design
The following computing sessions were recorded and used

as test vectors for the experiment:

• office - Document Editing

• browser - Web Browsing

• eclipse - Application Development using Eclipse

• presentation - Viewing a Presentation

• video - H.264 Video Playback

The first four sessions were recorded at 1280x1024 and 10
Hz. The relatively low framerate is justified because these
computing activities do not produce highly dynamic changes
to the display. The last session is an H.264 video playback

Figure 4: Preliminary Pixel Bridge Results.

at 656 x 352 and 23.98 Hz. Each of the five recorded ses-
sions was tested with all five modes. Tile size was calculated
dynamically, resulting in forty square tiles along the longest
dimension. Each experiment tracked the number of bytes
transmitted over the NDDI link without compression.

7.3 Results and Analysis
The results are shown in Figure 4, with each data point

representing the ratio of the bytes transferred“over the wire”
for that mode versus the 60 Hz mode. Recall that the 60 Hz
mode represents the current status quo of transferring the
entire framebuffer at a constant refresh rate. For the first
four recorded sessions (i.e., not including video playback),
Pixel Bridge demonstrates progressively better performance
between Framebuffer mode to Flat Tile mode to Cached
Tiled mode. Each of these modes employs NDDI resources
in an increasingly sophisticated manner which is reflected
in the improved performance. The Framebuffer mode illus-
trated the advantage of updating the display at a framerate
that matches the source content instead a fixed refresh rate.
The Flat Tile mode brought the advantage of only updat-
ing the changed regions of the display. The Cached Tiled
mode showed the gains of filling the display with identical
tiles as well as using previously cached tiles allowing it to
outperform the Ideal Pixel Latching mode for some tests.

The results of the H264 video clip are quite contrary to
the first four. Using a trivial, static tile size proved to be a
poor approach to partitioning the screen. Furthermore, the
frame content is so dynamic, that the caching was barely
beneficial. The NDDI overhead of updating the coefficient
plane negated most of the benefit from the cached tiling.
This result was somewhat expected, since the Cached Tiled
mode was conceived with the computing pixel bridge use
cases in mind. Furthermore, full motion video represents
highly dynamic content which does not match well with the
title cache abstraction of Pixel Bridge. However, a more
video-specific application that marshaled NDDI resources
in a manner more in line with how video is compressed and
represented may be more effective. This early experiment
is meant only to serve as a proof-of-concept for the NDDI
architecture.

8. CONCLUSIONS AND FUTURE WORK
Although the move to digital display interface standards

was a significant step in developing higher capacity chan-
nels, it was largely an iteration on the same framebuffer
abstraction for interfacing with a display. NDDI splits the
framebuffer concept between application and display and
uses a dramatically different approach to organizing that

memory. Our initial Pixel Bridge experiment represents a
“base case”, bridging pixels from a computing session to an
NDDI display. It showed increased savings as NDDI re-
sources were marshaled in increasingly sophisticated ways
despite not leveraging any application-level semantics. Our
ongoing work will refine the Pixel Bridge experiment as well
as explore new use cases in order to test our hypothesis that
greater performance gains can be realized when application-
level semantics are brought to bear.

9. REFERENCES
[1] Digital visual interface dvi revision 1.0. Digital

Display Working Group, April 1999.

[2] S. Eilemann, M. Makhinya, and R. Pajarola.
Equalizer: A scalable parallel rendering framework.
Visualization and Computer Graphics, IEEE
Transactions on, 15(3):436 –452, 2009.

[3] The insane hardware driving the world’s biggest led
billboard. website.
http://gizmodo.com/#!5096475/the-insane-hardware-
driving-the-worlds-biggest-led-billboard.

[4] High-definition multimedia interface specification
version 1.3a. HDMI Founders, November 2006.

[5] High-definition multimedia interface specification
version 1.4a extraction of 3d portion. HDMI Founders,
March 2010.

[6] Ibm introduces world’s highest-resolution computer
monitor. Press Release, June 2001. http://www-
03.ibm.com/press/us/en/pressrelease/1180.wss.

[7] B. Jeong, L. Renambot, R. Jagodic, R. Singh,
J. Aguilera, A. Johnson, and J. Leigh.
High-performance dynamic graphics streaming for
scalable adaptive graphics environment. ACMIEEE
SC 2006 Conference SC06, (November):24–24, 2006.

[8] Mitsubishi electric diamond vision is dallas cow-
boys’ choice for new stadium. Press Release, April 2008.
http://www.businesswire.com/news/home/20080416005327/en.

[9] R. L. Myers. Display Interfaces: Fundamentals and
Standards. Series in Display Technology. Wiley, 2002.

[10] Nirnimesh, P. Harish, and P. Narayanan. Garuda: A
scalable tiled display wall using commodity pcs.
Visualization and Computer Graphics, IEEE
Transactions on, 13(5):864 –877, 2007.

[11] Nvidia tegra 2 specifications. website.
http://www.nvidia.com/object/tegra-2.html.

[12] K. Ocheltree, S. Millman, D. Hobbs, M. McDonnell,
J. Nieh, and R. Baratto. Net2display: A proposed
vesa standard for remoting displays and i/o devices
over networks. In Proceedings of the 2006 Americas
Display Engineering and Applications Conference,
Atlanta, GA, October 2006. ADEAC.

[13] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and
A. Hopper. Virtual network computing. IEEE Internet
Computing, 2(1):33–38, 1998.

[14] R. W. Scheifler and J. Gettys. The x window system.
ACM Trans Graph, 5(2):79–109, 1986.

[15] Vesa displayport: Version 1.1. Video Electronics
Standards Association, April 2007.

[16] Vesa net2display remoting standard: Version 1. Video
Electronics Standards Association, October 2009.

